
RTOS Innovators

Sales: (800) 366-2491 Email: sales@smxrtos.com Web: www.smxrtos.com Voice: (714) 437-7333 Fax: (714) 432-0490

smxUSBD™
USB Device Stack

smxUSBD is a robust USB device stack specifically designed and developed for embedded systems. It is
written in C, and can run on any hardware platform. While optimized for SMX®, smxUSBD can be
ported to another RTOS or operate in a stand-alone environment.

smxUSBD is a full-featured USB device stack. It
offers a clean, modular design that enables
embedded developers to easily add USB device
capabilities to their products. Normally this is
done to permit connection to a PC or laptop in
order to upload or download data, tables, code, or
audio, or to control or configure devices.
smxUSBD device stack is offered separately from
the smxUSBH host stack to reduce system cost
and memory usage for projects not needing a host
stack. It is compliant with the USB v2.0
specification (see www.usb.org).

For easy connectivity to a PC or laptop,
smxUSBD includes a mouse function driver, and
the following are available separately: Audio,
Mass Storage, RNDIS (Ethernet over USB), and
Serial. Each is compatible with the corresponding
Windows, Mac OS, and Linux USB driver.1
Thus, a device using smxUSBD does not require
a custom W/M/L driver in order to connect to a
PC or laptop. All that is needed is to decide on
the device connection most appropriate for your
device and to use the corresponding API for that
device – see below.

Also available is a USB composite function
driver framework, which allows a device to
simultaneously look like two or more USB
devices. The recently added USB multi-port
serial function driver allows a single USB
connection to function as multiple serial ports (up
to 1/2 the number of controller endpoints). This
function driver comes with a custom Windows
driver that supports it.

1RNDIS is not supported by Mac OS

Features

• Supports all four USB data transfers (control,
bulk, isochronous, and interrupt).

• Compliant with USB Specification 2.0.
• Function Drivers are available for audio, mass

storage, mouse, RNDIS (Ethernet over USB),
and serial. These are compatible with
Windows, Mac OS, Linux drivers.1

• Minimum code footprint 7.5 KB for ARM
Thumb and 14 KB for ColdFire, including
controller driver.

• Minimum RAM footprint 5 KB.
• Multi-port serial using a custom Windows

driver is available.
• Composite device support.
• Compatibility with ARM, Blackfin, ColdFire,

PowerPC, x86, and other CPUs.
• Supports 16-bit addressing CPUs such as

TI TMS320C55xx DSPs.
• NXP ISP1161, 1181, 1362, 158x, and 1761

device controller support
• On-chip device controller support for: Analog

Devices Blackfin BF5xx, Atmel AT91,
Freescale ColdFire 52211, 52223, 5227x,
525x, 532x/7x, 5445x, 548x/7x, i.MX1/L,
NXP LPCxxxx, Sharp LH7A4xx, and
STMicro STR7/9.

• Written entirely in ANSI-C.
• Driver template for new platform porting
• Optimized for SMX® RTOS.
• Easily portable to other RTOSs.
• Also runs stand-alone.

 2

Layers

• Function Driver Layer provides USB
functions to application such as mass
storage, mouse, and serial.

• Device Core Layer: provides the common

USB device framework.

• Device Controller Driver Layer provides
the interface to the selected USB device
controller. Porting Layer provides service
functions related to the hardware, OS, and
compiler.

Function Drivers

The following sections describe each function
driver and its API. The USB host is a Windows,
Mac OS, or Linux system, except for RNDIS,
which supports Windows and Linux only.

Audio

The Audio function driver makes your device
look like a sound card to the USB host. You can
include a speaker and/or microphone in this audio
device so you can playback and/or record sound.
You can also integrate a MIDI port so your
device can accept MIDI data. There is no need to
install any driver or .inf file in Windows,
Mac OS, or Linux to support this device but you
may need to implement the sound device driver
yourself, according to your system hardware and
software environment.

sud_AudioIsConnected(port)
sud_AudioSendAudioData(port, pData, iLen)
sud_AudioGetAudioData(port, pData, iLen)
sud_AudioGetCurSpkSettings(port, pSettings)
sud_AudioGetCurMicSettings(port, *pSettings)
sud_AudioSendMIDIData(port, pData, iLen)
sud_AudioGetMIDIData(port, pData, iLen)
sud_AudioRegisterNotify(port, handler)
sud_AudioPackMIDIEvent(port, pData, pEvent)
sud_AudioUnpackMIDIEvent(port, pData, pEvent)

Mass Storage

The Mass Storage function driver makes your
device look like a removable disk to the USB
host. You can copy files to and from it.

sud_MSRegisterDisk(pdiskop, lun)

Mouse (Included)

The Mouse function driver makes your device
look like an HID mouse to the USB host. It
moves the mouse cursor on your PC.

sud_MouseInput(key, x, y, wheel)

RNDIS (Ethernet over USB)

The RNDIS function driver makes your device
look like a Network Adapter to a Windows or
Linux USB host. The host can communicate with
this device via Ethernet data packets. Normally
you need a TCP/IP stack on your device and use
the APIs provide by this function driver to
emulate an Ethernet device and add it to your
network stack. This device has been integrated
with smxNS, our TCP/IP stack. Then the host and
your device can communicate with each other by
TCP/IP with a USB cable instead of an Ethernet
cable. One use of RNDIS is to allow configuring
a device from the web browser on a host
communicating with a web server on your device.
This is especially useful if your processor has
only a USB device controller and no Ethernet
controller on chip.

sud_RNDISIsPortConnected(port)
sud_RNDISWriteData(port, pBuf, len)
sud_RNDISRegisterPortNotify(port, handler)
sud_RNDISSetEthernetAddr(port, MACaddr)

Serial

The Serial function driver makes your device
look like one or more COM ports to a Windows,
Mac OS, or Linux USB host. You can use
standard Win32 functions to communicate with

 3

the device, just like if it were connected to a real
RS232 port. For the multi-port option, we provide
a custom Windows USB serial driver, since the
built-in Windows driver supports only one port.
Our driver also allows using only 1/2 the number
of endpoints saving them for other uses.

sud_SerialIsPort Connected(port)
sud_SerialWriteData(port, pBuf, len)
sud_SerialDataLen(port)
sud_SerialReadData(port, pBuf, len)
sud_SerialSetLineState(port, iState)
sud_SerialGetLineState(port, piState)
sud_SerialGetLineCoding(port, pdwDTERate,
 pbParityType, pbDataBits, pbStopBits)
sud_SerialRegisterPortNotify(port, handler)

Composite Devices

smxUSBD allows creating a composite device.
Such a device has multiple interfaces that are
active at the same time using a single controller
chip. For example, a composite device might
combine serial and mass storage. See the
smxUSBD User’s Guide for more discussion of
this.

Writing New Drivers

Contact us first to make sure we are not already
working on a driver you need.

smxUSBD provides a function driver template
and a section in the manual to help you write a
new function driver, if needed.

smxUSBD also provides a USB device controller
driver template and a section in the manual, to
help you write a new driver in case it does not
support your USB device controller.

Porting

Due to its extensive processor support, little or no
porting is necessary when smxUSBD is used with

SMX. However, smxUSBD is designed to work
with other RTOSs and to run standalone.

The hardware porting layer consists of two files,
udhdw.h and udhdw.c. These files contain
definitions, macros, and functions to port
smxUSBD to a new processor. In addition, if the
USB device controller is not among those already
supported, a new driver will need to be written.

smxUSBD was developed for use with SMX®,
but it can be ported to any RTOS. The RTOS
porting layer consists of two files, udosport.h and
udosport.c. These files contain definitions,
macros, and functions to port to a new RTOS.

smxUSBD works best in a multitasking
environment. However, it can also be ported to a
non-multitasking stand-alone environment.

16-Bit Addressing Support

smxUSBD supports processors that can only do
16-bit memory addressing (not byte addressing)
such as the TI TMS320C55xx DSPs. These
processors are difficult to support for typical
communication protocols because of byte data
and byte fields in standard protocol data
structures. This support is enabled by a
configuration option in smxUSBD.

Testing

We test smxUSBD with USBCheck v5.1 on a
Windows PC to verify that it passes the Chapter 9
USB compliance tests for full speed and high
speed. We also test with USBCV v1.3 and it
passes the Chapter 9, HID, and MSC tests.

 4

Code Size
Code size can vary greatly depending upon the
processor, compiler, and optimization level.

Component ARM
Thm
IAR
(KB)

ARM

IAR
(KB)

BF

VDSP
(KB)

CF

CW
(KB)

Core 5 8 12 9
Analog Dev BF5xx — — 3.3 —
Atmel AT91 2 3 — —
Freescale CF532x — — — 4
Freescale CF548x — — — 9
Freescale MX1 — —
NXP ISP1181 4
NXP ISP158x —
NXP LPCxxxx 2.6 4 — —
Sharp LH7A40x 2.5 4 — —
STMicro STR7/9 2.5 4 — —
Audio drv 3 6 3.5 6.5
Mass Storage drv 3.1 5 5.5 5
Mouse drv 0.5 1 1 1
Serial drv 1.5 2.5 2.5 2.7
RNDIS drv 2.5 3.5 2.5 4.7
Composite drv 0.5 1 1 1

CF532x also supports 5227x, 525x, 537x, 5445x
ISP1181 also supports ISP1161 and ISP1362
ISP158x also supports ISP1761
IAR = IAR EWARM; CW = CodeWarrior

Data Size
All RAM used by smxUSBD for data is pre-
allocated from the heap during initialization.
Following is a table of RAM usage:

Component Size

(KB)
Core 1.5
Analog Devices BF5xx 0.5
Atmel AT91 0.5
Freescale CF5329, 525x 1
Freescale CF548x 1
Freescale MX1 0.5
NXP ISP1181 0.5
NXP ISP158x 1

NXP LPCxxxx 0.5
Sharp LH7A400/4 0.5
STMicro STR7/9 0.5
Audio driver 2
Mass Storage driver 2
Mouse driver 0.5
Serial driver (each port) 1
RNDIS driver 2
Composite driver 0.5

Performance
Mass Storage

The following table shows mass storage
performance using a RAM disk in the device.

Device
Controller

File Read
(KB/sec)

File Write
(KB/sec)

BF5xx 5000 5000
ISP1181 1071 1071
ISP158x 5300 3890

RNDIS
The following table shows Ethernet over USB
performance for the indicated packet size.

Device
Controller

Packet Size
(Bytes)

Send/Receive
(KB/sec)

CF532x/7x 512 256

Serial
The following table shows the transfer rates for
sending and receiving serial data for different
application packet sizes.

Device Controller Packet Size
(Bytes)

Rate
(KB/sec)

BF5xx (HS) 256 800
BF5xx (HS) 1024 2500
ISP1362 (FS) 64 140
ISP1362 (FS) 256 460
ISP1362 (FS) 512 804
ISP1362 (FS) 1024 887
ISP1761 (FS) 512 1830
ISP1761 (HS) 1024 2870
MCF54455 (HS) 16K 8000

 5

s:\marketing\lit\datasheets\smxusbd.doc 7/9/09

USB bus

smxUSBD device stack

USB function driverUSB class driver

smxFS

Device Application
smxFS

USB host controller driver USB device controller driver

USB host controllerUSB host controller USB device controller

mass storage

disk

(hardware)(hardware) (hardware) (hardware)

mass storage

1

1

1

2

2

2

1 Included in USB Thumb Drive Bundle 2 Included in USB Disk Emulator Bundle

state
machine

driver

block device driverblock device driver

smxUSB Product Overview

