
RTOS Innovators

Sales: (800) 366-2491 Email: sales@smxrtos.com Web: www.smxrtos.com Voice: (714) 437-7333 Fax: (714) 432-0490

smxUSBH™
USB Host Stack

smxUSBH is a USB host stack for embedded systems. It is written in C, and can be ported to any
hardware platform. smxUSBH is optimized for SMX®, but can be ported to other RTOSs or run stand
alone. It is modularized so that only what is needed will be linked into the final application.

Layers

• Class Driver Layer provides USB device
support such as mouse, keyboard, hub,
printer, mass storage, and serial.

• USB Driver Layer, or Core, provides the
common USB device framework
functionality.

• Host Controller Driver Layer provides
host controller driver functionality and
contains root hub support.

• Porting Layer provides service functions
related to the hardware, OS, and compiler.

Supported USB Host Controllers

The following drivers are available for smxUSBH
and help to provide an out-of-the-box solution for
many SoCs and external USB host controllers.

• EHCI
• OHCI
• UHCI
• Analog Dev Blackfin
• Atmel AT91
• Cirrus Logic EP93
• Freescale MCF522xx
• Freescale MCF525x,

532x/7x, 5445x
• Luminary LM3S

• Maxim MAX3421
• NXP ISP1160/1
• NXP ISP1362
• NXP ISP1760/1
• NXP LPC2/3
• NXP LH7A4xx
• PPC 405 GP EHCI
• Renesas SH
• Synopsys DWC

Features

• Class drivers are available for audio
devices, Ethernet adapters, HIDs, hubs,
keyboards, mass storage devices, mice,
modems, printers, serial adapters/devices,
and WiFi devices

• Compatibility with ARM, Blackfin,
ColdFire, PowerPC, SH, x86, and other
CPUs.

• Supports 16-bit addressing CPUs such as
TI TMS320C55xx DSPs.

• Cascading hub support for up to 127
devices. (Hub driver is extra cost option.)

• Compliant with USB Specification 2.0.
• Compliant with EHCI 1.0, OHCI 1.0a, and

UHCI 1.1 Specifications.
• Analog Devices Blackfin, Atmel AT91,

Cirrus Logic EP93xx, Freescale ColdFire,
Maxim MAX3421, NXP ISP1161/0,
ISP1362, ISP176x, LH7A4xx, LPC2xxx,
LPC3xxx, Renesas SH, Synopsys DWC
USB host controller support.

• Supports all four USB data transfers
(control, bulk, isochronous, and interrupt).

• Written entirely in ANSI-C.
• Typical code footprint 40 KB.
• Optimized for SMX® RTOS.
• Integrated with smxFS and smxFile for

USB disk support.
• OHCI and UHCI support in real mode and

under DOS.

 2

Class Drivers

smxUSBH has extensive class driver support,
further enabling us to provide an out-of-the-box
solution to your USB requirements.

Audio

Allows you to connect a USB headset, speaker, or
microphone. Many functions are provided for
playback and record. See the smxUSBH User’s
Guide for the API. Supports audio chips such as
the Conexant CX20562 and implements feedback
for audio output.

CDC ACM (Modem)

Allows you to connect most USB modems and
some mobile phones if they follow the USB CDC
ACM specification. It allows you to use a modem
to connect to the Internet or sync and exchange
data with a mobile phone.

su_CDCACMOpen(id)
su_CDCACMClose(id)
su_CDCACMInserted(id)
su_CDCACMRead(id, pdata, len)
su_CDCACMWrite(id, pdata, len)
su_CDCACMGetLineState(port, pstate)
su_CDCACMGetLineCoding(port, rate, parity, databits,

stopbits)
su_CDCACMSetLineState(port, state)
su_CDCACMSetLineBreak(port)
su_CDCACMSetCommFeature(port)
su_CDCACMGetCommFeature(port)
su_CDCACMRegisterStateChangeNotify()

Ethernet

Allows you to connect to USB-to-Ethernet
adapters that use the ASIX 88772 chip. A TCP/IP
stack such as smxNS is also required.

su_NetInserted(iID)
su_NetOpen(iID)
su_NetClose(iID)
su_NetWriteData(iID, pData,len)
su_NetGetNodeID(port, pData)
su_NetRegisterPortNotify(port, handler)

HID (Generic)

This is the basis to support human interface
devices such as a joystick.

su_HIDInserted()
su_HIDSetCallback(handler)

Hub

su_HubInit()
su_HubRelease()
su_HubClearExtFlag()
su_HubGetExtFlag()

Keyboard (Included)

Allows you to connect a USB keyboard.

su_KbdInit()
su_KbdInserted()
su_KbdRelease()
su_KbdSetCallback(handler)

Mass Storage

Allows you to connect a USB flash disk (thumb
drive), USB hard disk, USB card reader, or USB
floppy drive. It also supports devices with
multiple logical units, such as some USB card
readers and thumb drives. smxFS is already
interfaced to this driver. It is very easy to
interface another file system to it, if desired.

su_MStorIO(buf_ptr, first_sector, num_sectors, reading)
su_MStorMaxLUN()
su_MStorMediaChanged()
su_MStorMediaInserted()
su_MStorMediaProtected()
su_MStorMediaRemoved()
su_MStorSectorNum()
su_MStorSectorSize()

Mouse (Included)

Allows you to connect a USB mouse.

su_MouseInit()
su_MouseInserted()
su_MouseRelease()
su_MouseSetCallback(handler)

 3

Printer

Allows you to connect a USB printer and print to
it or read data from it. You need to implement the
Print Control Language for your specific printer.

su_PrnID(pdata, len)
su_PrnInit()
su_PrnInserted()
su_PrnRead(pdata, len)
su_PrnRelease()
su_PrnReset()
su_PrnStatus()
su_PrnWrite(pdata, len)

Serial

Allows you to connect any serial device that
Windows XP or 2000 can support without a
custom driver, such as a Windows Mobile 5
device. Unfortunately, most serial adapters do
require installation of a custom driver. Additional
code must be developed to support such an
adapter, which could require significant effort.
We have already created a driver for USB to
serial converters that use the FTDI FT232 and
Prolific PL2303 chips. Please see the smxUSBH
User’s Guide for details, and discuss your
requirements with us.

Windows
su_SerialOpen(id)
su_SerialClose(id)
su_SerialInserted(id)
su_SerialRead(id, pdata, len)
su_SerialWrite(id, pdata, len)
su_SerialGetLineState(port, pstate)
su_SerialGetLineCoding(port, rate, parity, databits, stopbits)

FT232 and PL2303
su_xxxOpen(id)
su_xxxClose(id)
su_xxxInserted(id)
su_xxxRead(id, pdata, len)
su_xxxWrite(id, pdata, len)
su_xxxSetModemCtrl (port, data)
su_xxxSetFlowCtrl (port, data)
su_xxxSetLineCoding(port, rate, parity, databits, stopbits)
su_xxxGetModemStatus (port)
su_xxxGetStatus (port)
su_xxxSetEventChar(id, data)
su_xxxSetErrorChar(id, data)
su_xxxSetLatencyTimer(id, ms)

su_xxxGetLatencyTimer(id)

xxx = FTDI or PL2303

WiFi

su_RT250XInit()
su_RT250XRelease()
su_RT250XGetOper()
su_RT250XInserted()

Writing New Drivers

Contact us first to make sure we are not already
working on the driver you need.

smxUSBH provides a class driver template and a
section in the manual to help you write a new
class driver, if needed.

smxUSBH also provides a USB host controller
driver template and a section in the manual, to
help you write a new driver in case it does not
support your USB host controller.

Porting

smxUSBH was developed for use with SMX®,
but it can be ported to any RTOS or run stand-
alone. The RTOS porting layer consists of two
files, uosport.h and uosport.c. These files contain
definitions, macros, and functions to port to a
new RTOS. smxUSBH works best in a
multitasking environment. However, it can also
be ported to a non-multitasking stand-alone
environment.

Due to SMX’s extensive processor support, little
or no porting is necessary when smxUSBH is
used with it.

The hardware porting layer consists of two files,
uhdwport.h and uhdwport.c. These files contain
definitions, macros, and functions to port
smxUSBH to a new processor. In addition, if the
USB host controller is not among those already
supported, a new driver will need to be written.

 4

smxUSBH also provides class driver and host
controller driver template so you can add new
class or host controller to your platform easily.
Those templates are also used by us to support
new hardware and classes.

Multiple Ports and Controllers

smxUSBH supports multiple ports on a controller
and multiple controllers of different types, but not
multiple controllers of the same type.

16-Bit Addressing Support

smxUSBH supports processors that can only do
16-bit memory addressing (not byte addressing)
such as the TI TMS320C55xx DSPs. These
processors are difficult to support for typical
communication protocols because of byte data
and byte fields in standard protocol data
structures. This support is enabled by a
configuration option in smxUSBH.

Real Mode and DOS Support

There is a need for legacy x86 systems to add
USB support, especially for flash disks. Because
of this, smxUSBH supports ISP116x, ISP1362,
OHCI and UHCI in real mode. OHCI uses
memory mapped I/O, and the PCI BIOS assigns a
high address near the top of the 4GB memory
space, which is not accessible in real mode. We
provide two solutions for this. A 386 or better
may be required. See the OHCI section of the
smxUSBH User's Guide for details. UHCI uses
x86 I/O space for access to UHCI registers, but a
386 or better is required for the 32-bit I/O
instructions.

Testing

Unlike USB Device, there is no protocol
compliance testing for software, for USB Host.
Instead, we test the host stack and class drivers
using multiple devices of each class, as listed in
Appendix C of the smxUSBH User’s Guide.

Code Size

Code size can vary greatly depending upon the
processor, compiler, and optimization level.
Below, Core includes USB Core and Porting
Layer.

Component ARM
Thm
IAR
(KB)

ARM

IAR
(KB)

BF

VDSP
(KB)

CF

CW
(KB)

Core 8 10 13 11
EHCI 14
OHCI 6.5 9 11
UHCI 16
NXP ISP116x 4.5 6 8
NXP ISP1362 5 8.5
NXP ISP176x 15
Analog Dev BF5xx — — 5 —
Freescale CF522xx — — — 7
Luminary LM3S 4 — — —
Maxim MAX3421 3 4
Audio 8 11 12
CDC ACM (Modem) 2 3 2 4
HID Mouse & Kbd 2.5 3.5 2 4
HID Generic 4.5 6.5 3 7
Hub 2 3 2 3
Mass Storage 5 6.5 6.5 7.5
Printer 1.5 2 2 3
Serial (FTDI) 1.5 2.5 1.5 4
Serial (Prolific) 3 4 1 4.5
Serial (Windows) 1.5 2.5 1 3

AT91, EP93xx, LPC24xx, LPC3xxx, and

LH7A404: See OHCI entry.
MCF5227x, MCF525x, MCF532x/7x, and

MCF5445x: See EHCI entry.
IAR = IAR EWARM; CW = CodeWarrior;
 VDSP = Visual DSP

Data Size

All RAM that smxUSBH uses for data is pre-
allocated from the heap when smxUSBH is first
initialized. Following is a table of RAM usage:

 5

Component Size
(KB)

Core 2
EHCI 6
OHCI 4
UHCI 70
NXP ISP116x 2
NXP ISP1362 2
NXP ISP176x 2
Analog Devices BF5xx 1
Freescale MCF522xx 1
Luminary 1
Maxim MAX3421 1
Audio 6
CDC ACM (Modem) 1
HID Mouse and Kbd 0.5
HID Generic 4
Hub 1
Mass Storage 2
Printer 2
Serial Converter (FTDI) 2
Serial Converter
(Prolific)

2

Serial (Windows) 1

AT91, EP93xx, LPC24xx, LPC3xxx, and

LH7A404: See OHCI entry.
MCF5227x, MCF525x, MCF532x/7x, and

MCF5445x: See EHCI entry.

UHCI requires much more memory than OHCI
because the hardware is more rudimentary and
the software must do more work. The UHCI
RAM requirements include 1024 Transfer
Descriptors (TDs) of 64 bytes each (64KB total).
The number of TDs can be reduced, but
performance suffers. For example with 128 TDs,
performance is reduced by a factor of 10. For
OHCI, there is no RAM vs. performance tradeoff.
OHCI is obviously preferable to UHCI for limited
RAM systems.

Performance for Mass Storage

The following table shows raw transfer speed
from and to a USB flash disk. 20MB total
transfers are done 4KB at a time.

The following table shows smxFS read/write
performance for the same USB flash disk. Total
file size is 20MB with 4KB transferred, at a time.

Host Controller File Read File Write
EHCI (NEC) 10556 KB/sec 7787 KB/sec
OHCI (NEC) 885 KB/sec 817 KB/sec
UHCI (VIA) 611 KB/sec 590 KB/sec
ISP116x (NXP) 336 KB/sec 328 KB/sec
ISP1362 (NXP) 591 KB/s 478 KB/s
ISP176x (NXP) 7023 KB/s 3072 KB/s
BF5xx (ADI) 9500 KB/s 7500 KB/s

The following table shows raw data transfer
speed between EHCI and LACIE USB 2.0 40GB
hard disk.

Host Controller Raw Reading Raw Writing
EHCI (VIA) 24966 KB/sec 19784 KB/sec

Performance for Serial

The following table shows serial read/write
performance. The device driver reads/writes 256
bytes of data at a time from/to the USB serial
device (not connected to a real RS232 device).

Host Controller Data Reading Data Writing
OHCI (NEC) 124 KB/sec 124 KB/sec

Notes

1. The hardware environment for this testing is:

Celeron 300MHz CPU; 32MB 100M SDRAM;
PC motherboard; Host Controller connects to
System by 33MHz PCI bus.

2. Flash Disk is Lexar JumpDrive USB 2.0 512MB
3. CPU speed, SDRAM speed and size, and External

Memory Bus speed will affect the performance.

Host Controller Raw Reading Raw Writing
EHCI (NEC) 12684 KB/sec 8320 KB/sec
OHCI (NEC) 891 KB/sec 832 KB/sec
UHCI (VIA) 639 KB/sec 611 KB/sec
ISP116x (NXP) 352 KB/sec 334 KB/sec
ISP1362 (NXP) 621 KB/s 493 KB/s
ISP176x (NXP) 7425 KB/s 3214 KB/s
BF5xx (ADI) 10000 KB/s 8000 KB/s

 6

USB bus

smxUSBD device stack

USB function driverUSB class driver

smxFS

Device Application
smxFS

USB host controller driver USB device controller driver

USB host controllerUSB host controller USB device controller

mass storage

disk

(hardware)(hardware) (hardware) (hardware)

mass storage

1

1

1

2

2

2

1 Included in USB Thumb Drive Bundle 2 Included in USB Disk Emulator Bundle

state
machine

driver

block device driverblock device driver

smxUSB Product Overview

s:\marketing\lit\datasheets\smxusbh.doc 7/9/09

